Fachgruppe Nanostrukturierte Materialien    


Publikationen
 
Home

Lehre
 Vorlesungen & Semin.
 Angebote f. Studenten

Forschung
 Themen
 Projekte
 Publikationen

Labore/Techniken
Anschrift
 Ausstattung
Röntgenbeugung

Mitarbeiter
 Übersicht
 offene Stellen

Links
 Universität Halle
 Institut für Physik
 IZM
 Andere Links

Institut f. Physik
FG Nanostrukturierte Materialien
Martin-Luther-Universitat
Halle-Wittenberg
Von-Danckelmann-Platz 3,
D-06120 Halle, Germany

Tel.:  +49 345 55 25321
Fax.: +49 345 55 27034

[Veröffentlichungen] [Patente] [Graduierungsarbeiten] [Berichte] [Poster]
Abstract

T. Schmidt, L. Worschech, M. Scheibner, T. Slobodskyy, G. Schmidt, L.W. Molenkamp, T. Passow, D. Hommel, A. Forchel
Light controlled spin properties and radiative coupling of CdSe based quantum dots
Phys. Stat. Soli. (C) Current Topics in Solid State Physics 4 (9) (2015-02-24 13:46:03), 3334-3346

The authors have studied the photoluminescence of large and small ensembles of CdSe based quantum dots (QDs) in magnetic fields for different polarizations and powers of the exciting laser light. By means of polarization spectroscopy the g factors and spin lifetimes were determined for semimagnetic CdMnSe QDs with nominal Mn contents of 0%, 1% and 2%. Also the corresponding exciton lifetimes were analyzed. A sign reversal of the QD exciton g factor was identified comparing the polarization of QD luminescence with 0% and 2% Mn. For small excitation powers QDs with 1% Mn have a vanishing small value of g. Interestingly, by ramping up the excitation power of the exciting laser the exciton g factor increases by up to a factor of 30. Different heating mechanism were identified by characteristic power dependencies. For low excitation powers indirect heating of the spin systems occurs whereas above a critical power direct heating due to photoexcited carriers dominates. It is also demonstrated that in CdMnSe QDs the circular polarization of the luminescence can be inverted solely controlled by the laser power. Applying mesa techniques, collective radiance of QDs is demonstrated. For that purpose the radiative lifetimes of QDs with such a density that there are many dots within an area proportional to the square of the optical wavelength were studied for different numbers of QDs removed from that area. A comparison of photoluminescence decay times obtained for non-resonant and quasi-resonant excitation conditions and different mesa sizes is given. Radiative coupling of QDs takes place at least on the order of 150 nm. This length is comparable to the dimensions of lithographically well definable nanostructures and may therefore provide a mechanism to couple discrete quantum objects on a large scale.

http://onlinelibrary.wiley.com/doi/10.1002/pssc.200775410/abstract
Impressum Copyright ©  Center of Materials Science, Halle, Germany. All rights reserved.