Fachgruppe Nanostrukturierte Materialien    


Publikationen
 
Home

Lehre
 Vorlesungen & Semin.
 Angebote f. Studenten

Forschung
 Themen
 Projekte
 Publikationen

Labore/Techniken
Anschrift
 Ausstattung
Röntgenbeugung

Mitarbeiter
 Übersicht
 offene Stellen

Links
 Universität Halle
 Institut für Physik
 IZM
 Andere Links

Institut f. Physik
FG Nanostrukturierte Materialien
Martin-Luther-Universitat
Halle-Wittenberg
Von-Danckelmann-Platz 3,
D-06120 Halle, Germany

Tel.:  +49 345 55 25321
Fax.: +49 345 55 27034

[Veröffentlichungen] [Patente] [Graduierungsarbeiten] [Berichte] [Poster]
Abstract

F. Heyroth, C. Hauser, P. Trempler, P. Geyer, F. Syrowatka, R. Dreyer, S.G. Ebbinghaus, G. Woltersdorf, G. Schmidt
Monocrystalline free standing 3D yttrium iron garnet magnon nano resonators
Phys. Rev. Applied 12 (2019-12-10 11:21:59), 054031
DOI: 10.1103/PhysRevApplied.12.054031


Nanoresonators in which mechanical vibrations and spin waves can be coupled are an intriguing concept that can be used in quantum information processing to transfer information between different states of excitation. Until now, the fabrication of freestanding magnetic nanostructures that host long-lived spin-wave excitations and may be suitable as mechanical resonators has seemed elusive. We demonstrate the fabrication of freestanding monocrystalline yttrium-iron-garnet (YIG) three-dimensional (3D) nanoresonators with nearly ideal magnetic properties. The freestanding 3D structures are obtained using a complex lithography process including room-temperature deposition and lift-off of amorphous YIG and subsequent crystallization by annealing. The crystallization nucleates from the substrate and propagates across the structure even around bends over distances of several micrometers to form, e.g., monocrystalline resonators, as shown by transmission electron microscopy. Spin-wave excitations in individual nanostructures are imaged by time-resolved scanning Kerr microscopy. The narrow line width of the magnetic excitations indicates a Gilbert damping constant of only a=2.6×10^(-4), rivaling the best values obtained for epitaxial YIG thin-film material. The fabrication process represents a step forward in magnonics and magnon mechanics as it provides 3D YIG structures of a high quality. At the same time, it demonstrates an alternative route toward the fabrication of freestanding crystalline nanostructures, which may be applicable also to other material systems.

Impressum Copyright ©  Center of Materials Science, Halle, Germany. All rights reserved.