Fachgruppe Nanostrukturierte Materialien    


Publikationen
 
Home

Lehre
 Vorlesungen & Semin.
 Angebote f. Studenten

Forschung
 Themen
 Projekte
 Publikationen

Labore/Techniken
Anschrift
 Ausstattung
Röntgenbeugung

Mitarbeiter
 Übersicht
 offene Stellen

Links
 Universität Halle
 Institut für Physik
 IZM
 Andere Links

Institut f. Physik
FG Nanostrukturierte Materialien
Martin-Luther-Universitat
Halle-Wittenberg
Von-Danckelmann-Platz 3,
D-06120 Halle, Germany

Tel.:  +49 345 55 25321
Fax.: +49 345 55 27034

[Veröffentlichungen] [Patente] [Graduierungsarbeiten] [Berichte] [Poster]
Abstract

A. Waag, T. Gruber, G. Reuscher, R. Fiederling, W. Ossau, G. Schmidt, L.W. Molenkamp
Spin manipulation using magnetic II-VI semiconductors
Journal of Superconductivity 14 (2) (2015-02-24 16:41:13), 291-298

Recently, efficient spin injection, being the first step towards semiconductor spin electronics, by using BeMnZnSe as a spin filter was accomplished. Such a spin filter made it possible to align the spin orientation of conduction electrons and subsequently inject them into GaAs. However, controlling spin orientation of conduction electrons by an external voltage would be very desirable for semiconductor-based magnetoelectronics. This can be accomplished by using spin switch structures, based on resonant tunneling through magnetic quantum wells, with two separate spin-up and spin-down resonances. Here we summarize both our recent results on spin injection as well as on spin aligner and magnetic resonant tunneling structures. For accomplishing the latter, we have developed magnetic resonant tunneling diodes based on BeTe–ZnMnSe–BeTe structures. Resonant tunneling diode is meant to serve as a spin switch because of the existence of two separate spin-up and spin-down resonances. The tunneling carriers have subsequently been injected into a nonmagnetic GaAs p–i–n light emitting diode. Circular polarization of the emitted light is an indicator of the spin polarization of injected electrons. At constant magnetic field and current, degree of spin polarization could be changed from 81% to 38% by only varying the voltage across the magnetic resonant tunneling device.

http://link.springer.com/article/10.1023/A%3A1007880522762
Impressum Copyright ©  Center of Materials Science, Halle, Germany. All rights reserved.