Fachgruppe Nanostrukturierte Materialien    


Publikationen
 
Home

Lehre
 Vorlesungen & Semin.
 Angebote f. Studenten

Forschung
 Themen
 Projekte
 Publikationen

Labore/Techniken
Anschrift
 Ausstattung
Röntgenbeugung

Mitarbeiter
 Übersicht
 offene Stellen

Links
 Universität Halle
 Institut für Physik
 IZM
 Andere Links

Institut f. Physik
FG Nanostrukturierte Materialien
Martin-Luther-Universitat
Halle-Wittenberg
Von-Danckelmann-Platz 3,
D-06120 Halle, Germany

Tel.:  +49 345 55 25321
Fax.: +49 345 55 27034

[Veröffentlichungen] [Patente] [Graduierungsarbeiten] [Berichte] [Poster]
Abstract

V. K. MAG-USARA, G. TOROSYAN, M. TALARA, J. AFALLA, J. MULDERA, H. KITAHARA, L. SCHEUER, E. Th. PAPAIOANNOU, R. BEIGANG, and M. TANI
Optical Excitation Wavelength-independent Terahertz Generation Using an Optimized Spintronic Bilayer
J. Jpn. Soc. Infrared Science & Technology 29 (2020-09-04 06:57:33), 57-62

A spintronic bilayer structure, which consists of 2-nm Fe and 3-nm Pt epitaxial grown on 500-um MgO substrate, was investigated as a terahertz (THz) source for different optical pump wavelengths and various average excitation power levels. By using this optimized Fe/Pt bilayer as the emitter in a standard THz time-domain emission spectroscopy setup, we demonstrate the efficient spintronic generation of pulsed THz radiation at 400-nm, ~800-nm, and 1550-nm excitation wavelengths even with relatively low average excitation power. The results show that the Fe/Pt on MgO is a versatile spintronic THz radiation source, as it exhibits fairly the same THz emission efficiency per average pump power across a wide range of femtosecond laser source wavelengths, from near-infrared and even up to the visible. Moreover, comparison of its THz emission performance with that of a dipole-type LT-GaAs photoconductive antenna shows that the spintronic epitaxial bilayer is a convenient alternative THz emitter.
Impressum Copyright ©  Center of Materials Science, Halle, Germany. All rights reserved.