Fachgruppe Nanostrukturierte Materialien    


Publikationen
 
Home

Lehre
 Vorlesungen & Semin.
 Angebote f. Studenten

Forschung
 Themen
 Projekte
 Publikationen

Labore/Techniken
Anschrift
 Ausstattung
Röntgenbeugung

Mitarbeiter
 Übersicht
 offene Stellen

Links
 Universität Halle
 Institut für Physik
 IZM
 Andere Links

Institut f. Physik
FG Nanostrukturierte Materialien
Martin-Luther-Universitat
Halle-Wittenberg
Von-Danckelmann-Platz 3,
D-06120 Halle, Germany

Tel.:  +49 345 55 25321
Fax.: +49 345 55 27034

[Veröffentlichungen] [Patente] [Graduierungsarbeiten] [Berichte] [Poster]
Abstract

Thomas Kehagias, Dimitrios Karfaridis, Camillo Ballani, Laura Mihalceanu, Christoph Hauser, Isaak G. Vasileiadis, George P. Dimitrakopulos , George Vourlias and Evangelos Th. Papaioannou
Magnetization Reversal and Dynamics in Epitaxial Fe/Pt Spintronic Bilayers Stimulated by Interfacial Fe3O4 Nanoparticles
Materials 14(16) (2022-04-27 16:59:14), 4354 (2021)
DOI: 10.3390/ma14164354


We have explored the impact of elevated growth and annealing temperatures on the local interfacial structure of thin Fe(12 nm)/Pt(10 nm) spintronic bilayers, epitaxially grown on MgO (100), and their correlation to magnetization reversal and dynamics. Electron-beam evaporation growth and subsequent annealing at 450 °C causes significant roughening of the MgO/Fe interface with irregular steps and multilevel (100) MgO surface terraces. Consequently, threading dislocations emerging at the step edges propagated in the Fe layer and terminated at the Fe/Pt interface, which appears pitted with pits 1.5-3 nm deep on the Fe side. Most of the pits are filled with the overlying Pt, whereby others by ferrimagnetic Fe3O4, forming nanoparticles that occupy nearly 9% of the Fe/Pt interfacial area. Fe3O4 nanoparticles occur at the termination sites of threading dislocations at the Fe/Pt interface, and their population density is equivalent to the density of threading dislocations in the Fe layer. The morphology of the Fe/Fe3O4/Pt system has a strong impact on the magnetization reversal, enhancing the coercive field and inducing an exchange bias below 200 K. Furthermore, low-temperature spin pumping and inverse spin Hall effect voltage measurements reveal that below their blocking temperature the nanoparticles can influence the spin current transmission and the spin rectification effects.

Impressum Copyright ©  Center of Materials Science, Halle, Germany. All rights reserved.